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1. INTRODUCTION 

THE NATURAL convection boundary layer flow of an elec- 
trically conducting fluid up a hot vertical wall in the presence 
of a strong magnetic field has been studied by several authors 
[IA] because of its application in nuclear engineering in 
connection with the cooling of reactors. Later, Cramer and 
Pai [S], presented a similarity solution for the above problem 
with varying surface temperature. On the other hand Wilks 
[6] investigated the problem with uniform heat flux illus- 
trating the problem by formulating in terms of regular and 
inverse series expansions of a characterizing coordinate that 
provided a link between the similarity states appropriate to 
the leading edge and downstream. Recently, Hossain and 
Ahmed [7] have studied a combined effect of forced and free 
convection with uniform heat flux in the presence of a strong 
magnetic field. In all the above studies, the effects of both 
the viscous and Joule heating were neglected because they 
are of the same order as well as negligibly small (Sparrow 
and Cess [2]). But Gebhart [8] has shown that the viscous 
dissipation effect plays an important role in natural con- 
vection in various devices which are subjected to large decel- 
eration or which operate at high rotative speeds and also in 
strong gravitational field processes on large scales (on large 
planets) and in geological processes. With this understanding 
Takhar and Soundalgekar [9] have studied the effects of 
viscous and Joule heating on the problem posed by Sparrow 
and Cess [2], using the series expansion method of Gebhart 
[8]. In the present paper, we propose to study the effect 
of viscous and Joule heating on the flow of an electrically 
conducting and viscous incompressible fluid past a semi- 
infinite plate of which temperature varies linearly with the 
distance from the leading edge and in the presence of uniform 
transverse magnetic field. The equations governing the flow 
are solved numerically applying the finite difference method 
along with Newton’s linearization approximation. Numeri- 
cal solutions are obtained for small Prandtl numbers, appro- 
priate for coolant liquid metal, in the presence of a large 
magnetic field. 

2. BASIC EQUATIONS 

The basic equations (l)-(3) describe steady two- 
dimensional, laminar free convection boundary layer flow 
of viscous incompressible and conducting fluid through a 
uniformly distributed transverse magnetic field of strength 
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Here u and v are the velocity components associated with the 
direction of increasing coordinates x and y, measured along 
and normal to the vertical plate, respectively, T is the tem- 
perature of the fluid in the boundary layer, g is the accelera- 
tion due to gravity, /l is the coefficient of thermal expansion, 
k is the thermal conductivity, p is the density of the fluid, co 
is the electrical conductivity, Y is the kinematic coefficient of 
viscosity, cp is the specific heat at constant pressure and T, 
is the temperature of the ambient fluid. 

The boundary conditions are 

u = v = 0, T= T,(x) at y = 0 

u-+0, T-+T, as I y+cc (4) 

In formulating equations (l)-(3), it has been assumed that 
(i) the ratio of thermal diffusivity to magnetic diffusivity is 
small compared with unity, (ii) fluid property variations are 
limited to density variation which is taken into account only 
in so far as it affects the buoyancy terms only and (iii) the 
short-circuit assumption applies. 

To reduce equations (l)-(3) to ordinary differential equa- 
tions, the stream function + defined by u = @jay and 
v = - a$/ax is introduced throughout equations (l)-(3) to 
get : 
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We now introduce the following set of transformations. 
These are defined by 

$(rl, 5) = (SPN)“4v”2xf (II, 03 

q = (gjN) ‘%- “*y 

Q(v, 0 = (T- T,)I(Tw-- TA t = s/W, 

T,- T, = Nx, M2 = u&/p(g/?N)“* 

substituted into equations (5), (6) and (4) to find 

(7) 
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f (0,O =f’(O, 5) = 0, WA 5) = 1 
f’(0, co) = e(o, co) = 0 I 

(10) 

The physical quantities of interest are the local friction factor 
z, and the local heat transfer 4. These are defined by 

r, = -pv- “2(gpN)2’4xf”(0, l) (11) 
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and 

y = -kv~- i~Z(~~~) ‘:4(r, - T,)B’(O, r). (12) 

In equations (7)-(12), the primes denote differentiations of 
the functions with respect to n. 

3. SOLUTIONS AND DISCUSSIONS 

Equations (8) and (9) along with the boundary condition 
(10) have been discretized with a simple implicit finite-differ- 
ence scheme, similar to that used by Keller and Cebeci [I 11. 
Before we describe equations (8) and (9), we write them in 
terms of the first-order system of pdes, as given below 

.f’ = I/ 

U’ = v 

(l3a) 

(13b) 

ri.fV-(M2+L~)u+e=~ uu-Vdf (13c) 
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UW 
and the boundary conditions turn into 

fto, 5) = Ii(O, 0 = 0. @(O, 5) = 0 
c/(rlZ,. 0 = n(n,, 5) = 0 ’ (15) 

At the net rectangle, we denote the net points by 

&=O, 5”=?-‘+k,, n = 1,2,....N 

qO=O, rrI=+,-+h, j=f,2 ,.... J. 1 . qJ=ql 

(16) 
Here n and j are just the sequence numbers. 

Now, we approximate the quantities (,A U, V, 0, W) at 
points (5”, n,) q the net by (,f:, U;* V;, Q;, WY). We also 
employ &’ for points and quantities midway between net 
points and for any net function : 

,-‘:* = gT”+5”- ‘1, q,_jq = ;(q,-tq,_,f 

i s:-‘= = %fl+g;-‘), .#I,2 = X.4:+,9;‘,) 
(17) 

We now show, the finite-difference approximation of equa- 
tions (13) and (14) for the mid-point (r, rr_,,). below 
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The wall and the edge boundary conditions are 

.f;) = 0, U; = 0, F” = 1, UT = 0, 0; = 0. (20) 

Ifweassumef;-‘,U; ‘, i’;-‘,r$-‘.and W;m’tobeknown 
for 0 < j < 3, equations (18)-(20) are a system of SJ+S 
equations for the solution of 5J+5 unknowns (8. U;, 
Vy, 4, w;‘), j = 0, 1,. , J. These non-linear systems of 
algebraic equations are linearized by means of Newton’s 
method which then solved in a very efficient manner by using 
the Keller-box method, discussed by Cebeci and Bradshaw 
[ 121 in a simpler way. 

The resulting solutions for the velocity and temperature 
functions are shown graphically in Figs. I and 2 and the 
numerical values for shear-stress and the heat transfer 
coefficients are presented in Table 1. 

The assumptions used to establish the governing equations 
are particularly appropriate to liquid metals. Moreover, as 
liquid metals are currently used as coolants in nuclear engin- 
eering (Wilks [6]), we have pursued here solutions into the 
lower Prandtl number range, e.g. 0.05 for lithium, 0.01 for 
mercury and 0.005 for sodium. In fact, detaiied numerical 
solutions have been obtained for cr = I, 0.72, 0.5, 0. I, 0.05, 
0.01, 0.005. Associated numerical data are available from 
the author. As confirmation of satisfactory reconciliation 
between the previous works and the present analysis, we 
present the solutions only for 0 = 0.05, 0.01 and 0.005. In 
Figs. 1 and 2, the solid curves are due to Cramer and Pai [5], 
in the absence of viscous and Joule heating, which qudh- 
tatively agrees with the results of these authors. From Fig. 
I (a) we may conclude that the presence of viscous dissipation 
reduces the flow field. This further reduces owing to the 
increase in the dissipative heating when the fluid is being 
heated. A similar situation is also observed from Fig. l(b), in 
the case of the temperature field. Figs. 2(a) and (b) represent, 
respectively, the velocity and temperature field for different 
values of the Prandtl number in the absence, as weil as in the 
presence, of viscous and Joule heating. From Fig. 2(a) we 
may conclude that dissipative heat reduces the velocity field 
more in the lower Prandtl number fluid than that of the 
higher Prandtl number. On the other hand, in the case of 
temperature field, the dissipative heat reduces it faster in the 
higher Prandtl number than that in lower Prandtl number 
fluid. 

We now discuss the effect of viscous and Joule heating on 
the shear-stress and the rate of heat transfer at the surface 
of the wall heat. From Table 1 it may be easily concluded 
that the presence, as well as an increase in dissipation, reduces 
both the skin-friction and the rate of heat transfer at the 
surface. This rate of decrease in the skin-friction and the rate 
of heat transfer due to the presence of viscous and Joule 
heating slow down with an increase in the magnetic field. 

Table I. Values ,r(O) and 0’(O) for different values of M and 
6 when D = 0.005 

-- 
M < .f”cO) -w’(O) 

0.000 0.81952 0.06152 
I 0.005 0.81360 0.07401 

0.010 0.80873 0.08354 

0.000 0.48258 0.04121 
2 0.005 0.48078 0.04961 

0.010 0.47918 0.05649 

0.000 0.32868 0.03318 
3 0.005 0.32818 0.03737 

O.OIO 0.32765 0.04178 

0.000 0.24800 0.02704 
4 0.005 0.24792 0.03098 

0.010 0.24760 0.03354 

0.000 0.19886 0.02540 
5 0.005 0.19883 0.0280 1 

0.010 0.19874 0.03033 
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FIG. I. (a) Velocity profiles against 9 for different values of 5 and M with u = 0.005. (b) Temperature 
profiles against ty for different values of < and M with CT = 0.005. 
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Frc;. 2. (a) Velocity profiles against q for different values of rr and 5 with M = 1 .O. (b) Temperature profiles 
against q for different V&ES of u and 5 with M = 1.0. 
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